

Institut für Statistik

Vorlesung: Lineare Modelle

Prof. Dr. Helmut Küchenhoff

Institut für Statistik, LMU München

SoSe 2014

Institut für Statistik

Einführung und Beispiele

Das einfache lineare Regressionsmodell

Das multiple lineare Regressionsmodell

Institut für Statistik

Institut für Statistik

Einführung und Beispiele

1 Das einfache lineare Regressionsmodell

Das multiple lineare Regressionsmodell

Darstellung

$$Y_{i} = \underbrace{\beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots \beta_{p}x_{ip}}_{x'_{i}\beta} + \varepsilon_{i}; \quad i = 1, \dots n$$

$$x'_{i} = (1, x_{i1}, \dots, x_{ip})$$

$$Y = X\beta + \varepsilon \tag{2.1}$$

mit

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix} \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Modellannahmen

$$E(\varepsilon_i) = 0$$

$$E(\varepsilon) = \mathbf{0} \qquad (2.2)$$

$$V(\varepsilon_i) = \sigma^2 \qquad (2.3)$$
 $\{\varepsilon_i \mid i = 1, \dots, n\} \qquad \text{unabh.} \qquad (2.4)$
Aus (2.3), (2.4) folgt: $V(\varepsilon) = \sigma^2 I$

$$\varepsilon_i \sim N(0, \sigma^2) \text{ und } (2.4)$$

$$\varepsilon \sim N(\mathbf{0}, \sigma^2 I) \qquad (2.5)$$

Y: Zufallsvektor der Zielgröße

X: feste Design-Matrix (Matrix der Einflussgrößen)

 β : Vektor der Regressionsparameter

 ε : Störgrößen

Interpretation des Modells

- Lineare Abhängigkeit von den Einflussgrößen
- Steigt x_k um eine Einheit, so steigt Y im Erwartungswert um β_k Einheiten, wenn alle anderen **X-Variablen festgehalten werden**
- Linearer Zusammenhang bei Festhalten der übrigen Variablen
- β_k charakterisiert den Einfluss von x_k unter Berücksichtigung der übrigen Variablen ("Confounder-Korrektur")

KQ-Schätzer

Wir betrachten Modell (2.1). Dann heißt

$$\hat{\beta} = \arg\min_{\beta} \underbrace{(Y - X\beta)'(Y - X\beta)}_{\sum_{i=1}^{n} (Y_i - x_i'\beta)^2} \tag{2.6}$$

KQ-Schätzer.

$$\hat{\varepsilon}_i := Y_i - \chi_i' \hat{\beta} \tag{2.7}$$

Es gilt für (X'X) invertierbar: $\hat{\beta}$ existiert, ist eindeutig und

$$\hat{\beta} = (X'X)^{-1}X'Y. \tag{2.8}$$

Der KQ-Schätzer erfüllt die Normalgleichungen:

$$X'\hat{\varepsilon} = \mathbf{0} \tag{2.9}$$

Produktsummenmatrix

Die Matrix X'X heißt Produktsummenmatrix.

Es gilt:

$$X'X = \begin{pmatrix} n & \sum x_{i1} & \cdots & \sum x_{ip} \\ \sum x_{i1} & \sum x_{i1}^{2} & \cdots & \sum x_{i1}x_{ip} \\ \vdots & \vdots & \ddots & \vdots \\ \sum x_{ip} & \cdots & \cdots & \sum x_{ip}^{2} \end{pmatrix}$$
(2.10)

Eigenschaften des KQ-Schätzers

Sei das Modell (2.1) mit (2.2) gegeben.

Der KQ-Schätzer ist erwartungstreu:

$$E(\hat{\beta}) = \beta \tag{2.11}$$

② Für die Varianz-Kovarianz-Matrix von $\hat{\beta}$ gilt unter (2.3) und (2.4):

$$V(\hat{\beta}) = \sigma^2 (X'X)^{-1} \tag{2.12}$$

1 Unter (2.5) gilt:

$$\hat{\beta} \sim \mathcal{N}\left(\beta, \ \sigma^2(X'X)^{-1}\right) \tag{2.13}$$

Hat-Matrix und Residualmatrix

Sei das Modell (2.1) mit einer Designmatrix X mit rg(X) = p + 1 gegeben. Es gilt

$$\hat{Y} = X \underbrace{(X'X)^{-1}X'Y}_{\hat{\beta}} \tag{2.14}$$

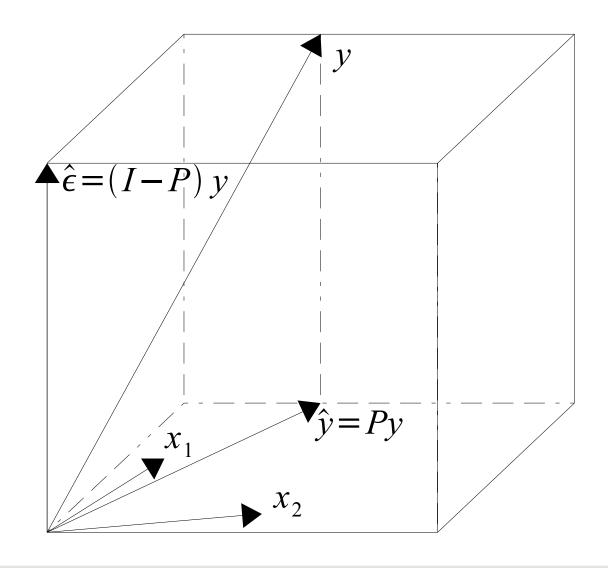
$$P := \underbrace{X(X'X)^{-1}X'}_{n \times n} \tag{2.15}$$

$$\hat{\varepsilon} = Y - \hat{Y} = \underbrace{(I - P)}_{Q} Y \tag{2.16}$$

$$Q := I - P \tag{2.17}$$

Geometrische Interpretation

Wir betrachten den Vektorraum \Re^n . Die Beobachtungen Y und x sind Vektoren. Die KQ - Schätzung ist eine orthogonale Projektion auf den von den x- Vektoren aufgespannten Unterraum:



Lineare Modelle SoSe 2014

Eigenschaften von P und Q

P heißt **Hat-Matrix** ($\hat{Y} = PY$), Q **Residualmatrix**. P und Q sind Projektionsmatrizen, und zueinander orthogonal:

$$P' = P, \ P^2 = P \tag{2.18}$$

$$Q' = Q, \ Q^2 = Q \tag{2.19}$$

$$PQ = QP = \mathbf{0} \tag{2.20}$$

Bemerkungen

- Beweis durch Nachrechnen (benutze (AB)' = B'A')
- Bedeutung von $P^2 = P$: zweimaliges Anwenden der Regression führt zum gleichen Ergebnis
- Bedeutung von PQ = 0: Regression von Residuen liefert $\hat{y} = 0$

Für die Varianz-Kovarianz-Matrizen von \hat{Y} bzw. $\hat{\varepsilon}$ gilt:

$$V(\hat{Y}) = \sigma^2 P \tag{2.21}$$

$$V(\hat{\varepsilon}) = \sigma^2 Q \tag{2.22}$$

$$da \, \hat{\varepsilon} = Q \varepsilon \tag{2.23}$$

Erwartungstreue Schätzung von σ^2

Gegeben sei das Modell (2.1) mit (2.2) bis (2.4).

Dann ist:

$$\hat{\sigma}^2 = \frac{1}{n - (p+1)} \hat{\varepsilon}' \hat{\varepsilon} = \frac{1}{n - (p+1)} \sum \hat{\varepsilon}_i^2$$
 (2.24)

ein erwartungstreuer Schätzer für σ^2 .

Beweis

$$E(\hat{\varepsilon}'\hat{\varepsilon}') = E(\varepsilon'Q'Q\varepsilon) = E\left(\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}\varepsilon_{i}\varepsilon_{j}\right)$$

$$= \sum_{i=1}^{n} E(\varepsilon_{i}^{2})q_{ii} + 0 = \sigma^{2} * sp(Q)$$

$$= \sigma^{2} * (n - sp(P)) = \sigma^{2} * (n - (p+1))$$

$$sp(P) = sp(X(X'X)^{-1}X') = sp((X'X)^{-1}X'X) = sp(I_{p+1})$$

Bemerkung:

Für Projektionsmatrizen gilt allgemein: Sp(P) = rg(P)

Beispiel: Volumen von Hühnereiern

V : Volumen

d : Durchmesser

r : Radius

